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Abstract. Language makes human communication possible. Apart from everyday 
applications, language can provide insights into individuals’ thinking and reasoning. Machine-

based analyses of text are becoming widespread in business applications, but their utility in 
learning contexts are a neglected area of research.  Therefore, the goal of the present work is to 
explore machine-assisted approaches to aid in the analysis of students’ written compositions. A 

method for extracting common topics from written text is applied to 78 student papers on 
technology and ethics. The primary tool for analysis is the Latent Dirichlet Allocation algorithm. 

The results suggest that this machine-based topic extraction method is effective and supports a 
promising prospect for enhancing classroom learning and instruction. The method may also prove 
beneficial in other applied applications, like those in clinical and counseling practice.  

Keywords: natural language processing, machine-analysis, latent Dirichlet allocation, text 
analysis, classroom learning, clinical and counseling practice.  

 

Тарабань Роман, Кодуру Лакшмоджі, ЛаКур Марк, Маршалл Філіп. Пошук 

спільних рис під час обробки текстів людиною та машиною.  

Анотація.  Мова уможливлює людське спілкування. Крім повсякденних застосувань, 
мова може забезпечити розуміння думок та міркувань людей. Машинний аналіз тексту 

набуває великої популярності у сфері ведення бізнесу, проте його корисність у 
навчальному процесі залишається досі недослідженою темою. Тому мета статті – дослідити 

автоматизовані підходи, що можуть бути корисними під час аналізу писемної продукції 
студентів. 78 студентських робіт із галузей технології та етики було піддано аналізу з вико-
ристанням методу вилучення загальних тем із письмового тексту. Основним інструментом 

для аналізу став алгоритм латентного розташування Дирихле. Результати свідчать про те, 
що цей автоматизований інструмент виокремлення теми є ефективним й перспективним у 

плані підвищення рівня навчання в аудиторії та викладання. Метод також може бути засто-
сованим в інших прикладних програмах, наприклад, у тих, якими користуються під час 
клінічної практики та консультування. 

Ключові слова: обробка природної мови, машинний аналіз, латентне розташування 
Дирихле, аналіз тексту, навчання в класі, клінічна практика та консультування. 
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1. Introduction 

Human communication depends on language.  Everyday tasks, at home and at 
work, are accomplished through language.  Our first premise in the present work is 

that apart from the practical applications of language in everyday interactions, the 
language that an individual uses may reveal deeper aspects of the person. Wilhelm 

von Humboldt (1767-1835), a well-known German diplomat and scholar wrote: 
“Language is the outward manifestation of the spirit of people: their language is 

their spirit, and their spirit is their language; it is difficult to imagine any two things 
more identical" (in Salzmann, 2004:42). The linguist, Edward Sapir, believed that 
"language and our thought-grooves are inextricably interwoven, [and] are, in a 

sense, one and the same" (in Salzmann, 2004:43). In psychological research, 
Pennebaker and King (1999) proposed that “the way people talk about themselves 

reveals important information about them” (p. 1297).  Chung & Pennebaker (2008) 
analyzed college students’ narratives in order to gain insight into students’ self-

concepts and personality traits.  In that work, as well as other work (Pennebaker et 
al., 2014, 2015), Pennebaker and colleagues showed that expressive writing could 

be effectively analyzed and interpreted through the aid of automated computer 
methods. 

In the last ten years, there has been an upsurge in the use of machine systems to 
analyze natural language. The origin of the recent exponential upturn in machine-

based language processing capacity can be attributed in large part to two factors: an 
increase in the physical storage capacity and processing speeds of computing 
systems; and significant advances in Bayesian and other analytic methods.  Machine 

tools for analyzing language operate according to a fundamental computational 
principle: There are probabilistic markers (cues, features) in the input (e.g., student 

essays) that characterize key constructs in the input.  We take this principle as the 
second premise in the present study. The theoretical position taken in some models 

regarding the fundamental role of probabilistic features in language acquisition and 
processing (see Taraban & Marshall, 2017) is also consistent with this second 

premise. Thus, the reliance on probabilistic representations of linguistic features 
forms a common ground in human and machine-based language processing. 

The present paper takes the first steps in exploring the possibility that by 
extracting and identifying key elements of texts, machine-based systems can mimic, 

in part, the classification and interpretation of students’ written work by humans.  
From an applied perspective, machine processing of students’ academic writing may 

afford educators automated aid in the analysis and evaluation of students’ work. In 
the discussion, we consider similarities and differences between human and machine 
processing of written text, extensions of these methods to other areas, and the 

limitations of this methodology. 
1.1. Natural Language Processing 

Natural language processing (NLP) refers to the use of computers and 
artificial intelligence (AI) to process and analyze natural language in written or 

spoken form.  NLP encompasses speech recognition, language comprehension, and 
language production. Counterparts to today’s intelligent language interfaces 
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emerged decades earlier, including Weizenbaum’s (1966) ELIZA, Winograd’s 

(1972) blocks world (SHRDLU), and Schank and colleagues’ (1975) MARGIE.  As 
early as the 1950s, machine translation was showing some early success. By the 

1980s, developers were creating machine-based conversational partners, typically to 
assist in practical situations. 

Language varies by genre. Research papers, blogs, and Twitter, for instance, 
have different writing styles. Machine analysis has addressed these differences in 

roughly the same way, which is to apply machine-learning algorithms to a sample of 
the material of interest, after which the machine learning algorithm can 
automatically discover similar patterns in new materials.  In so-called supervised 

learning, the human analyst knows in advance which patterns or topics should be 
learned and generalized by the machine to new materials. In unsupervised learning, 

the analyst depends on the machine algorithm to discover the patterns or topics in 
the training materials. Latent Dirichlet Allocation (LDA) is a topic modeling 

algorithm, and is one example of unsupervised machine learning. This is the 
algorithm of interest in the present study. 

1.2. A Case Study 
The context of this study is a sophomore-level course that is offered to 

engineering majors at Texas Tech University in the U.S. (Taraban et al., 2017, 
2018).  This course develops ethical reasoning through an introduction to ethical 

theories and contemporary ethical issues in engineering, technology and society. 
Course materials and assignments consider intuitionism, which is a person’s 
intuitive reaction to ethical issues, three ethical theories – i.e., utilitarianism, respect 

for persons, and virtue ethics – and the National Society of Professional Engineers 
Code of Ethics, which is an accepted code of ethics for professional engineers in the 

U.S. Course activities require students to analyze and respond to ethical issues in 
contemporary social settings involving engineering dilemmas. A major course 

requirement is a capstone paper incorporating Social Impact Analysis (SIA). The 
general purpose of SIA is to identify and analyze the positive and negative social 

consequences of engineering plans and projects.  In students’ SIA papers, they 
identify and discuss a contemporary engineering technology (e.g., autonomous 

tractor trailers, fracking, drones, ethical hacking).  They are required to incorporate 
knowledge from one or more of the ethical theories into their analyses. 

The goal of the present study was to develop and test the application of the 
Latent Dirichlet Allocation (LDA) algorithm for the automatic extraction of topics 

in a random sample of capstone papers submitted by students in the ethics course to 
fulfill a course requirement. 

Three empirical questions guided this analysis: 

 Can LDA find topical differences that distinguish between Non-Ethics and 

Ethics documents? 

 Do the respective topics make sense? 

 Could a distribution of topics within each document be developed based on 

the LDA output? 
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2. Methods 

The materials for this analysis were a random sample of 78 capstone papers 
that were submitted for course credit in the ethics course described earlier.  In a 

previous study (Taraban et al., 2017), each paper was recompiled by the researchers 
into two parts.  One part consisted of the text in the paper that discussed the 

engineering technology that was the subject of the paper; the other part consisted of 
the text that described the ethics associated with that technology.  This resulted in 78 

documents consisting of technical descriptions and 78 documents consisting of 
ethics discussions, referred to here as the Non-Ethics and Ethics texts, respectively.  
These two types of texts were analyzed separately, as described next.  

2.1. Software Tools 
Two computer applications, LDA and MEH, were applied in this study.  MEH 

is available online at no cost (see https://meh.ryanb.cc/). The MEH website includes 
a link to R computer language code for LDA https://meh.ryanb.cc/understanding-

output/ that we used with small modifications described below. The R code ran 
using R-Studio https://www.rstudio.com/products/rstudio/download2/ . 

LDA (Latent Dirichlet Allocation). LDA is an unsupervised machine learning 
algorithm (Blei, Ng, & Jordan, 2003). LDA is based on the assumption that a person 

composing a document has a number of topics in mind and that these topics can be 
recovered from an analysis of the document (Ostrowski, 2015). LDA treats each 

document as a mixture of topics and every topic as a distribution over the words in 
the document. The goal of applying LDA is to identify latent topic information 
across a collection of documents. LDA assumes that all documents in the collec tion 

share the same set of topics, but each document exhibits those topics with different 
proportions. Thus, it should be possible to recover an estimate of the distribution of 

topics within a document. 
MEH (Meaning Extraction Helper).  MEH carries out a number of relevant 

functions related to text analysis prior to the application of LDA.  Of interest here is 
the construction of a Document-Term Matrix (DTM), which LDA uses in order to 

identify the document topics.  MEH constructs a DTM by first deleting stop words 
from the documents. Stop words are typically function words, including 

conjunctions, determiners, and prepositions, which carry little lexical meaning in a 
document. The remaining content words are converted to lemmas, that is, 

inflectional endings are removed, leaving only the base form of the word.  Each 
document is represented as a vector of lemmas in the DTM.  

2.2. Procedure 
The 78 ethics and 78 non-ethics document sets were analyzed separately, by 

applying the following steps.  The MEH software was opened and the application 

Wizard was chosen to guide the process. First the document files were uploaded to 
MEH, stop words were deleted from the documents, the remaining words were 

converted to lemmas, and a document-term matrix (DTM) was chosen as the output.  
R Studio was then opened, the LDA code described above was opened in R Studio, 

the number of requested topics and terms per topic were input in the R code, and 
three additional function calls were made in the code, which were for 1. document-

Roman Taraban, Lakshmojee Koduru, Mark LaCour, Philip Marshall  

   

, 
 

https://meh.ryanb.cc/
https://meh.ryanb.cc/understanding-output/
https://meh.ryanb.cc/understanding-output/
https://www.rstudio.com/products/rstudio/download2/


East European Journal of Psycholinguistics. Volume 5, Number 1, 2018 

 
87 

to-topic distribution, 2. topic-to-term probabilities, and 3. the probabilities of topics 

associated with each document.  These additional functions provided the data for 
Figure 1 and Table 1 in this paper. 

 
3. Results 

When LDA was applied to the Non-Ethics content of the SIA papers, five 
prominent topics corresponded to the topics that students often chose to focus on in 

their papers: Topic 1: company organization and stakeholders; Topic 2: technical 
aspects of hydraulic fracking; Topic 3: technical aspects of solar energy roadways; 
Topic 4: artificial intelligence technology; Topic 5: electric vehicle technology.  

 
 

 
 

 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
Fig. 1. Topics and Weighted Lemmas Associated  

with Non-Ethical Document Topics 
 

The ten most frequent terms for each topic and the weights associated with the 

most critical lemmas (concepts) associated with the topics are shown in Figure 1. 
When LDA was applied to the Ethics content of the SIA papers, a visibly different 

set of topics emerged. 
Representative topics were as follows:  Topic 1: environmental concerns 

associated with oil fracking; Topic 2: general ethical themes related to public health, 
safety, the environment, and engineering NSPE code; Topic 3: human benefits of 

technology and ethical theory of utilitarianism; Topic 4: human benefits associated 
with solar highways; Topic 5: ethical issues associated with autonomous vehicles.  

Curiously, the lemma “ethical” appears in Figure 1, in Non-Ethics Topic 1.  The 
likely reason is that some students chose to write on the topic of “ethical computer 

hacking” in industry and government. In the non-ethics portions of the papers, the 

Finding a Common Ground in Human and Machine-Based Text Processing   
, 

 



East European Journal of Psycholinguistics. Volume 5, Number 1, 2018 

88 
 

term “ethical” appeared in descriptions of the practice of ethical hacking and ethical 

hackers, but without connections to ethics per se.  So here, LDA included the term 
“ethical,” but without reference to ethics.  This is one example of how LDA output 

could be somewhat confusing and could require closer examination of the source 
documents. 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

Fig. 2. Topics and Weighted Terms Associated with Ethical Document Topics 
 

Overall, the differences in topics in Non-Ethics and Ethics documents recovered 
by LDA support a positive response to the first empirical question:  Can LDA find 

topical differences that distinguish between Non-Ethics and Ethics documents? The 
second question will be addressed informally: Do the respective topics make sense? 

Based on careful reading of the associated SIA papers, there is a clear relationship 
between the technical and ethical topics recovered by LDA and the content in the 

SIA papers.  A more formal statistical approach to this question will be undertaken 
in future work (cf., Chen & Wang, 2007).  The third empirical question: Could a 

distribution of topics within each document be developed based on the LDA output? 
is addressed in Table 1, which shows the ethics-text outcomes for a sample of ten of 

the 78 participants in this study. The Table shows that each participant’s document 
can be described as a mixture of topics, with probabilities associated with each 
topic.  The magnitudes of the probabilities in Table 1 show that some participants in 

the sample focused on specific topics (e.g., participants 2, 3, 8), while others showed 
flatter distributions across multiple topics (e.g., participants 5, 7). Thus, the answer 

to the third empirical question is also affirmative.  As is the case with the second 
question, this question also deserves a more formal statistical assessment approach 

to establish the validity of these probability distributions. 
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Table 1 

Probability Distribution of Ethics Topics in Participants’ Documents 
(Dominant topic in each document is bolded) 

 Topics 

Participant 1 2 3 4 5 

1 0.15 0.19 0.42 0.09 0.15 

2 0.03 0.056 0.75 0.13 0.04 

3 0.04 0.75 0.10 0.06 0.05 

4 0.13 0.35 0.32 0.10 0.10 

5 0.05 0.09 0.36 0.38 0.11 

6 0.08 0.09 0.30 0.46 0.07 

7 0.22 0.18 0.16 0.13 0.32 

8 0.06 0.07 0.16 0.66 0.05 

9 0.06 0.07 0.21 0.12 0.53 

10 0.10 0.11 0.24 0.42 0.13 

Note: Topic 1: environmental concerns associated with oil fracking; Topic 2: general ethical 

themes related to public health, safety, the environment, and engineering NSPE code; Topic 3: 
human benefits of technology and ethical theory of utilitarianism; Topic 4: human benefits 

associated with solar highways; Topic 5: ethical issues associated with autonomous vehicles. 

 
4. Conclusions 

Machine-based analyses of texts are becoming widespread in business 
applications and in the analysis of social media exchanges.  The present study 

examines prospects for applications in learning contexts, which is presently a 
somewhat neglected area of scholarship.  

A premise behind this work, stated in the introduction, was that There are 
probabilistic markers (cues, features) in the input (e.g., student essays) that 

characterize key constructs in the input. There is general agreement in how 
language is learned and processed, and as Feldman (1999) points out, part of 

learning involves finding the key patterns in linguistic utterances: 
Children learn language by discovering patterns and templates. We learn how 

to express plural or singular and how to match those forms in verbs and nouns. We 

learn how to put together a sentence, a question, or a command. Natural Language 
Processing assumes that if we can define those patterns and describe them to a 

computer then we can teach a machine something of how we speak and understand 
each other. Much of this work is based on research in linguistics and cognitive 

science. p. 62 
The premise that relates language processing to the probabilistic processing 

of key terms and patterns is consistent with the computational view that has been 
adopted across the domains of cognitive science, artificial intelligence, and 

cognitive neuroscience. Within this class of computational models, weighting and 
processing probabilistic cues forms the common ground of human and machine 

processing.   
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On the other hand, more empirical support is needed for the machine-based 

principles that the brain implements probabilistic information in near-optimal 

ways (Recchia et al., 2015: 13).  Further, in spite of how valid “patterns and 

templates” may be (Feldman, 1999), they do not characterize a complete 

description of the nature of language.  As Jerome Bruner (1990) and others, like 

John Searle (in Mishlove, 2010) have argued long before the more recent upsurge 

in machine analysis, language has a significant component of meaning.  Current 

methods, like LDA, capture the patterns, i.e. the syntax, of the analyzed texts.  

However, extensions of this methodology, or new methods, are required in order 
to extract and represent the deeper meaning in these texts. 

The strength of the LDA method is the ability to separate out topics in large 

corpora. It is often the case in large classroom sections that the instructor must 

resort to fixed assessment instruments, like multiple-choice tests, because of a 

shortage of human resources to evaluate open-ended questions related to course 

materials. The success of automated methods, like machine-based applications of 

LDA, will allow instructors to provide students with more open-ended 

opportunities to express themselves. This is because LDA and related applications 

may be able to extract the meaning being communicated by students instead of 

requiring instructors to figure out what students are trying to communicate. Further, 

these machine applications may be able to automate at least part of the feedback and 

grading process, providing students with helpful feedback and guidance. 
The prospects for LDA and related applications are good, in areas of ethics 

and technology, as in the present example, but in other areas as well, for instance, 

in applied clinical and counseling settings, as in the seminal work of Pennebaker 

and colleagues (Chung & Pennebaker, 2008; Pennebaker, 2004; Pennebaker & 

King, 1999; Pennebaker et al., 2014, 2015). Clinicians, for instance, may be able 

to apply these methods to extract the central topics in therapeutic writing by 

clients on specific topics. This additional source of input could potentially 

improve the effectiveness of treatment.  

There are limitations to immediate classroom and other applications of 

LDA.  Primarily, there are currently only a few statistical methods available for 

estimating the most valid number of relevant topics or terms in a corpus of 
documents (Chen & Wang, 2007). The best method for assess ing the validity of 

LDA analyses may still be manual inspection by human judges. The problem 

with human judgment, however, is that this is a time-consuming process.  Ideally, 

methods will be developed to more directly and transparently assess the validity 

of LDA analyses.   
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